

NMSD - REQUIREMENTS REVIEW AGENDA

Introductions

Proposal Overview

Leverageable Technologies At COI

Basic Phase Programmatics

Basic Phase Requirements

Technical Approach

Action Items

NMSD - REQUIREMENTS REVIEW PROPOSAL OVERVIEW

NMSD - PROGRAM

Program Objective:

- Demonstrate That a /10 or Better; <15kg/m² Primary Mirror Can Be Made at an "Acceptable" Cost/Schedule
 - Target Flight Unit Cost <\$100M for Telescope Assy
 - Year 2006-2007 Launch

Program Phases

- Basic Phase-
 - NGST Mirror System Demonstrator (NMSD) Preliminary Design/Analysis
 - NMSD Test Plan
 - PDR (2 October 1997)
- Option 1 Phase- To Be Awarded at Completion of Basic Phase
 - NMSD Final Design/Analysis
 - NMSD Fabrication, and Requirements Conformance Testing
 - Final Review
- Option 2 Phase- To Be Awarded at Completion of Option 1
 - NMSD Thermal/Vac/Optical Testing; Non-Destructive Dynamics Testing
 - Test Reviews

NMSD - DEVELOPMENT TEAM

COI

- Engineering
- Composites Fabrication
- Sub, and Final Assembly

Eastman Kodak

- Engineering Support: Mirror Structure; Systems; Metrology
- Mirror Surface Processing
- Mirror Final Inspection and NMSD Demonstration

Waterjet Technologies, Inc.

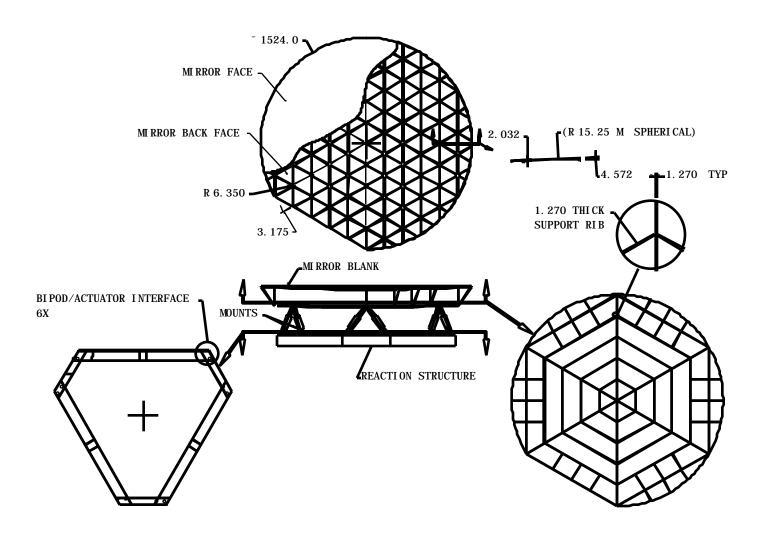
Blank Facesheet Lightweighting

WJ Schafer Associates, Inc.

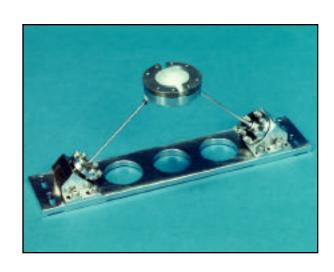
- Systems Engineering Support
- Actuator/Flexure Engineering Support

University of Arizona

Cryogenic Materials Testing



NMSD - PROPOSED GEOMETRY



KODAK IR&D MIRROR ASSEMBLY

ULETM Frit Bonded Mirror

Invar Reaction Structure and Flexure Mounts

Design to Operate at < 10°K

Tested Successfully to 90°K

NMSD - PROPOSED FAB / ASSEMBLY APPROACH

Mirror (Substrate) Subassembly

- 40mm Thick Blank Zerodur Ground to 15.25m RoC, 7mm Thick (Kodak)
- Shaped Glass to Be Light-Weighted (Waterjet Milled) to Form Isogrid
 Stiffened Mirror Substrate (Waterjet Technologies Inc.)
- Composite Core Structure Bonding to Shaped Glass w/TBD Adhesive (COI)
- Preliminary Figuring of Mirror Subassembly to <0.10 RMS (Kodak)
 - Analytically Derived Figure Compensation for 35°K/0g Operation

Reaction Structure Subassembly (COI)

- Bonded Composite Tubes Primary Structure
- Bonded Invar Mounts for Actuator Attachment and Mirror Assy Testing

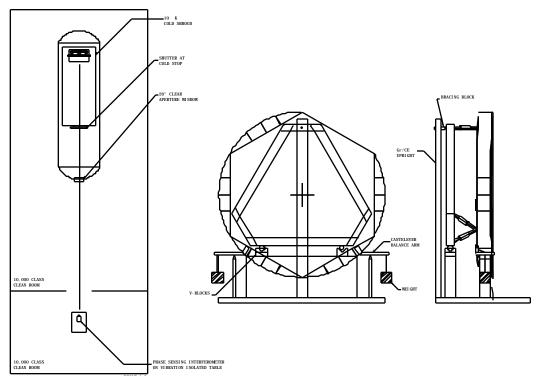
NMSD Final Assembly (CO I/ Kodak)

- Mirror Substrate Actuators / Flexures Integration Onto Backplane
- Mirror Substrate Integration Onto Actuators/Flexures
- Interferometer Inspection of Figure
 - Analytically Derived Figure Compensation for 35°K; Simulated 0g @ Inspection

KODAK MIRROR OPTICAL FINISHING

Primary Mirror Surface Generation

Final Figuring


Preliminary Figuring

OPTION 2 NMSD OPTICAL DEMONSTRATION SIMULATED SPACE ENVIRONMENT

Test to be Conducted at AEDC (Chamber 10V)

1g Compensation System

Optical Demonstration at

- Ambient
- ~77°K/Vacuum
- ~35°K/Vacuum

NMSD - PRELIMINARY TEST PLAN

Start Point, Option 1 Measured Figure

– Initi	al Optical	Test In	Thermal/Vac	Chamber	Test Step 1
---------	------------	---------	-------------	---------	-------------

Without Chamber Window, Ambient Conditions

– O	ptical Test at	Ambient ((~290°K;1	atm)	w/Window	Test Step	2
------------	----------------	------------------	-----------	------	----------	-----------	----------

Optical Test at ~290°K; Vacuum (10⁻⁸ Torr)
 Test Step 3

Optical Test at ~77°K/10⁻⁸ Torr
 Test Step 4

Optical Test at ~35°K/10⁻⁸ Torr
 Test Step 5

Optical Test at ~77°K/10⁻⁸ Torr
 Test Step 6

Optical Test at ~290°K/10⁻⁸ Torr
 Test Step 7

Optical Test at Ambient Conditions
 Test Step 8

Data Evaluation to Determine Final Figuring Parameters (Kodak/COI)

Vibration Testing (Modal Tap) of NMSD

Final Figuring to < /4

Final Thermal/Vac

Test Step 2 through 8 @ AEDC

NMSD - REQUIREMENTS REVIEW

LEVERAGEABLE TECHNOLOGIES AT COI

COI LEVERAGEABLE TECHNOLOGIES

Previous Contracts

- Ultralightweight Mirrors
 - Kodak ULE Hybrid Mirror
 - DARPA Mirror
 - HALO Mirror

Concurrent SBIR and IRAD Activities

- Mirror Technologies
 - Phillips Lab Ultra-Lightweight Hybrid (2.5m RoC Spherical)
- Moisture Barrier Technologies
 - MSFC Phase I Materials/Processes
- Tooling Technologies
 - MSFC Phase I Low-Cost Replication Tooling
 - Castable Ceramic, Low-CTE Blocking Bodies

COI TECHNOLOGY PROGRAMS

Primary Development Programs	MSFC Tooling Ph I SBIR	Replication IRAD MSFC X-Ray Mirror Ph II SBIR (Pending) JPL Mirror Ph II SBIR ISUS Concentrator	Phillips Lab Mirror Ph I SBIR MSFC Mirror Ph I SBIR Kodak ULE Hybrid IRAD AeroMet Hybrid	MSFC SBIR Barrier Ph I SBIR
Mirror Technologies>>>	Low-Cost Tooling Castable Refractory Formed Glass Surfaces Thick Ni Alloy Plating	Specular Surfaces Accurate/Low-Cost Replication Alternate Surfacing Processes/Materials Insitu Mold Release Ni Alloy Plating Supersmooth Surface	Lightweight Structure Advanced Core Hybrid Composites	Moisture Control Surface Barrier Processes/Materials
Beneficiary Programs	Phillips Lab Mirror Ph I SBIR JPL Mirror Ph II SBIR	Phillips Lab Mirror Ph I SBIR MSFC Tooling Ph I SBIR MSFC SBIR Barrier Ph I SBIR	JPL Mirror Ph II SBIR	Phillips Lab Mirror Ph I SBIR JPL Mirror Ph II SBIR

KODAK / COI HYBRID MIRROR

ULE™/ Composite Lightweighted Facesheet

12 kg/m²

Room Temperature Application

PHILLIPS LAB PHASE 1 SBIR

Study Objective

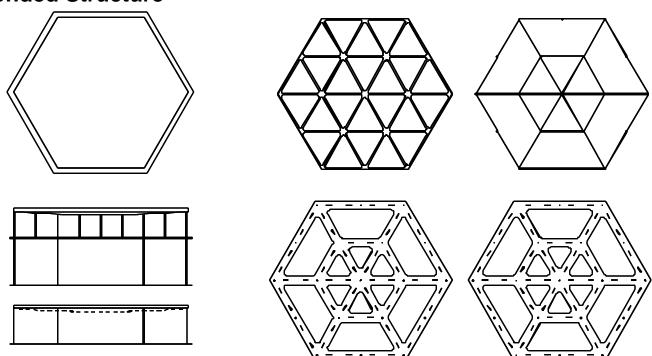
 Enabling Technology to Develop Production of Ultra-lightweight Meter Class Space Optics

Study Goals

- 5 10 kg/m² Areal Weight
- Visible and Near Visible Range
 - Target Figure /40 RMS; Roughness 10-20 Angstroms
- Technology Target: >1.5 meter
- Compatible with Space Environment

Phase I .25m Polymer Matrix Test Mirror Deliverable

- 2.5m Radius of Curvature Surface
- Oct 1997 Delivery for Test

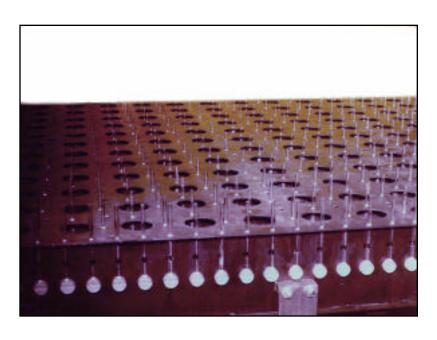


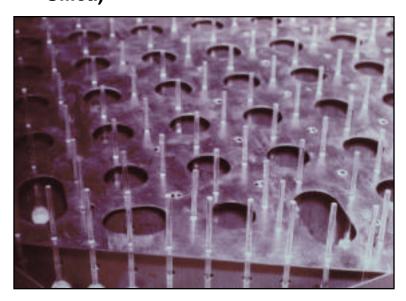
PHILLIPS LAB PHASE 1 SBIR

Transferable Technologies: Lightweight, Hybrid Mirror

- Composite Substructure
- Flexure Mounted, with Option of Fixed Surface Glass Mirror
- Waterjet Pocket Milled Glass
- Bonded Structure

DARPA MIRROR Ultra-lightweight Precision Mirror Development





HIGH ALTITUDE LARGE OPTICS

Fused Silica Dual Cylinder Flexures (540) @ Substrate Midplane
Flexures Match Machined in Place to Spherical Contour
Substrate CTE +/- 0.5 ppm/°F
15 msi Substrate Modulus of Elasticity

Active Design
30" x 40" Aperture
Composite Substrate With 0.15"
Fused Silica Facesheet
/20 @ 0.633 µm
Operating Temperature Range 320°F/ +250°F
16.5 kg/m² Areal Density Without
Actuators (9.4 Substrate, 6.1 Fused
Silica)

NMSD - REQUIREMENTS REVIEW BASIC PHASE PROGRAMMATICS

BASE PHASE OUTLINE

Task 1: NMSD Preliminary Design and Analysis

- NMSD Concept and Detailed Design Development
- Analyses of Demonstration and Operational Requirements

Task 2: Option 1 and 2 Test Plan

- Test Objectives
- Test Descriptions
- Facilities and Equipment
- Schedules

Task 3: Documentation and Delivery

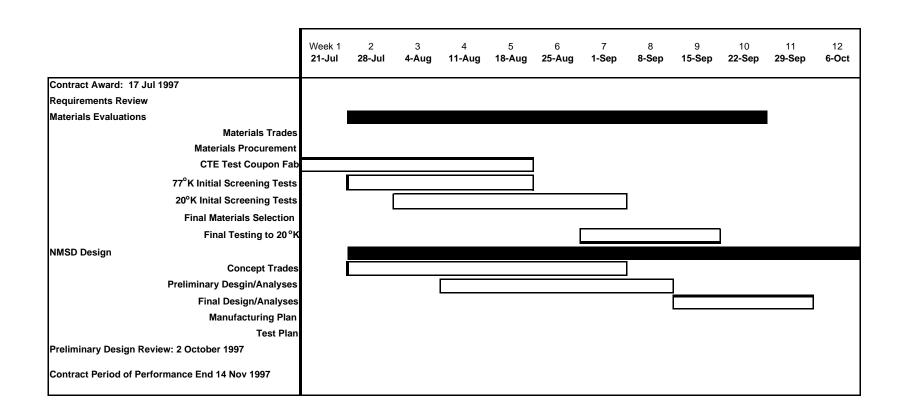
Requirements Review Presentation
 RR (31 July 1997)

Preliminary Design Review Presentation PDR (2 October 1997)

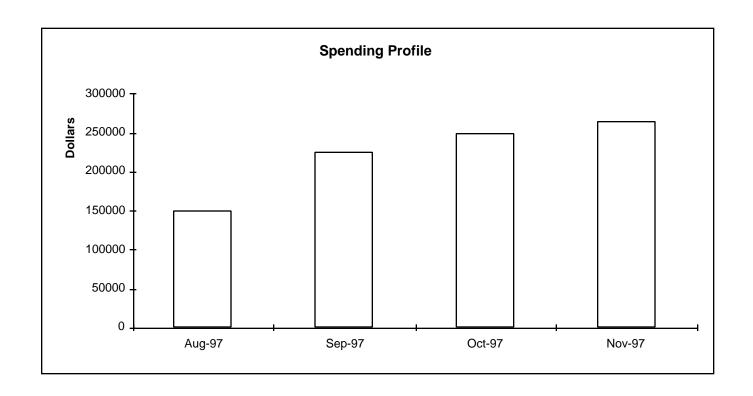
Supporting Analysis and Models
 PDR (2 October 1997)

NMSD Test Plan
 PDR (2 October 1997)

Progress Review Presentations
 NGST Quarterly Reviews



NMSD - BASIC PHASE SCHEDULE



NMSD - BASIC PHASE SPENDING

NMSD - REQUIREMENTS REVIEW BASIC PHASE REQUIREMENTS

NMSD - MIRROR / ASSEMBLY REQUIREMENTS

<u>PARAMETER</u>	<u>VALUE</u>	GOAL
Footprint	Circular with one flat edge	
Flat Length	One Half the diameter	
Diameter	>1.5m	2.0m
Shape	Spherical	
F/No.	f/6	f/5
No. of Actuators	As required for figure and/or phasing capability	
Figure	< /4 (= .633 micron)	< /10
Mid-Spacial Errors	< /10 (= .633 micron)	< /20
Mid-Spacial Scale	1 - 10 cm	
Finish	<2.0nm RMS	1.0nm RMS
Areal Density (mirror/backplane)	15kg/m²	<15kg/m²
NMSD Optical Performance		
Simulated Space Environment	70°K Min. Temp	35°K
NMSD Dynamic Characteristics	TBD	

NMSD - REQUIREMENTS COMPLIANCE

Mirror Geometry (Footprint, Flat Length, Diameter, Shape, F/No.)

- Basic Phase Initial Design Definition
- Option 1 Inspection

Mirror Surface Performance (Figure, Mid-Spatial Errors, Finish)

- Option 1 Demonstration
 - Measured Figure @ Ambient
 - Analytically Derived Figure Compensation for 35°K
 - Analytically Derived Figure Correction for 0g
 - Simulated 0g @ Inspection
- Option 2 Demonstration
 - Test Derived Figure Compensation for 35°K
 - Measured Figure @Ambient
 - Analytically Derived Figure Correction for 0g
 - Simulated 0g @Inspection

NMSD - REQUIREMENTS COMPLIANCE

Areal Density

- Basic Phase Initial Design Definition
- Option 1 Inspection

NMSD Optical Performance in Simulated Space Environment

- Option 2 Demonstration
 - 77°K/10⁻⁸ Torr
 - 35°K/10⁻⁸ Torr

NMSD Dynamic Characteristics

- Option 2 Demonstration
 - Non-Destructive Modal Tap Test of NMSD at Frequencies up to 350Hz

NMSD - REQUIREMENTS REVIEW TECHNICAL APPROACH

NMSD - BASE PHASE ENGINEERING ACTIVITIES

Concept Development/Refinement Studies

- Glass/Composite Hybrid
- Passive Figure Control: Engineered Materials Application
- Demonstrated Manufacturing Techniques

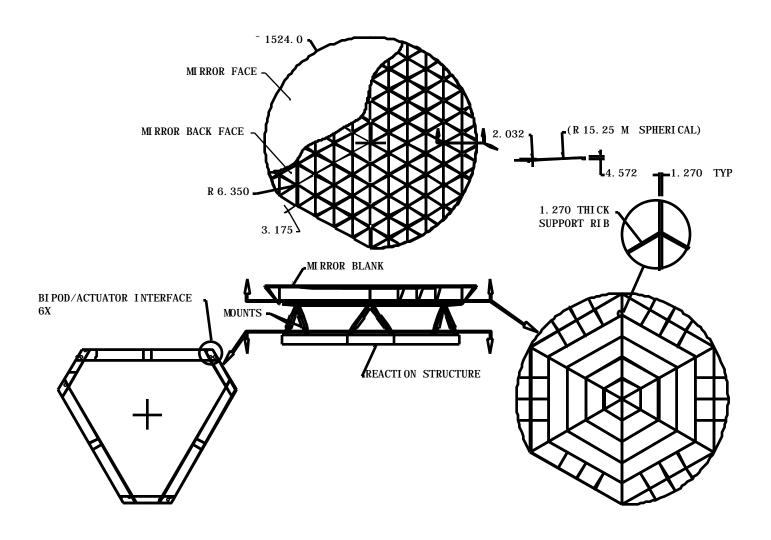
Preliminary and Final Analyses

- System Level Requirements Compliance
- Manufacturing, Inspection and Handling (i.e. Figuring Loads)
- Thermal/Vacuum and Dynamics Testing

Engineering Design Documentation

Manufacturing Plan for Option 1 Activities

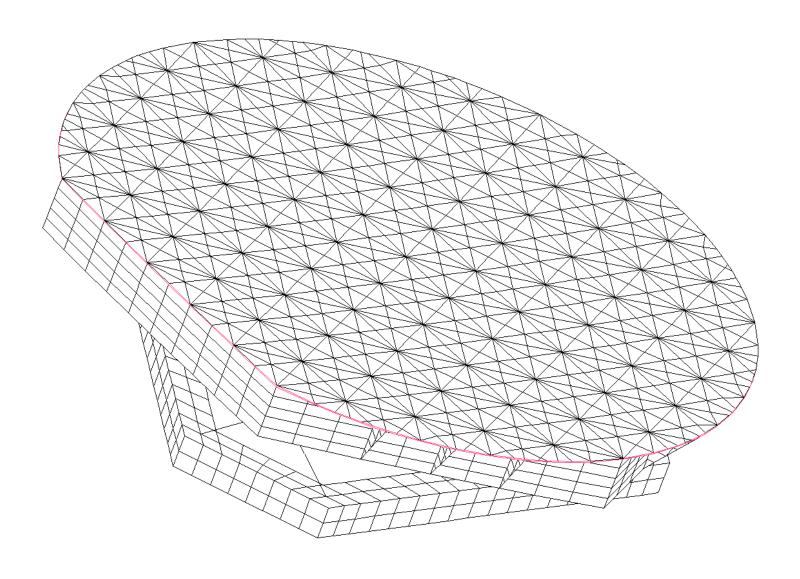
Test Plan for Option 1 and 2 Activities



NMSD - PROPOSED GEOMETRY

PRELIMINARY MASS PROPERTIES: 1.5M NMSD

Component	Mass (kg)	_
Mirror Assembly		
Glass Face	8.3	
Composite Stiffnening	5.2	
Flexure Mounts	3.2	
Composite Reaction Structure	2.4	
Mounting Fittings	0.7	
Contingency (10%)	2.0	_
	21.8	Total Mass (kg)
	12.3	Areal Density (kg/m ²)



PRELIMINARY ANALYSIS MODEL

PRELIMINARY ANALYSIS RESULTS

Mirror Surface Material: Zerodur

- .07" Thick Membrane; .2 Wide x .1 Tall Isogrid Stiffeners

Mirror Substructure and Reaction Structure Material: M55J/ 954-3

- .04" Thick Backplate
- .02" Thick, 5" Tall Ribs, ~5" Spacing

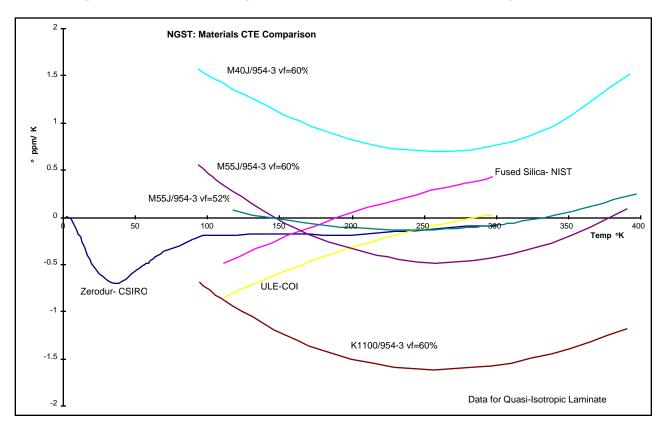
Modal Analysis

Flexures Modes: 157 Hz; 158Hz; 193Hz

Mirror Surface First Mode: 244Hz (Perimeter Simply Supported)

Optical Demonstration- Effects of 1G Compensation on Figure

Support Condition	Figure	Peak to Valley
w/o 1g Compensation	.72	3.12 µ
w/ 1g Compensation	.06 µ RMS	.52 µ



MATERIALS

Base Phase Test Program

- Establish (CTE) Compatible Material System for Hybrid Mirror
- Preliminary Screening of Suitable Fiber/Resin Systems Based upon COI Experience Base (Database limited to 77°K)

PRELIMINARY MATERIALS TEST PLAN

Glass Materials Data Generation

- Zerodur Class 0/1 to 20^oK
- Fused Silica to 20°K

Composite Materials Data Generation

- 77°K Preliminary Design Data
 - M46J; M55J/954-3 Etc
- 20^ok Preliminary Design Data
 - TBD Fiber at Varying Fiber Volumes
- Final Characterization to 20°K
 - TBD Fiber, TBD Fiber Volume, 0°/90° Laminate Orientations

Adhesive Shear Strength at Cryo

- Data Available at 77°K and 20°K for EA-9394 (Composite Bonding)
- Minimal Data for EA-9309 @ Temperature (Glass to Composite)
- Alternate Adhesives Will Be Investigated

NMSD - REQUIREMENTS REVIEW ACTION ITEMS